
Mailman – An Extensible Mailing List Manager Using Python

Ken Manheimer
Corporation for National Research Initiatives

klm@cnri.reston.va.us
Barry Warsaw

Corporation for National Research Initiatives
bwarsaw@cnri.reston.va.us

John Viega
Reliable Software Technologies

viega@rstcorp.com

Abstract
Email has a key role in the explosive growth of the
Internet, calling for Mailing List Management Systems
(MLMS) that can adapt to, and even foster, new forms of
community organization as they emerge. A new MLMS,
Mailman, is well suited to such evolution because it has
been developed to be versatile and extensible. One factor
contributing to these strengths is its implementation in
Python.

In this paper we will look at various aspects of
Mailman’s extensibility. We will consider how the
system’s design and how features of its implementation
language, Python, factor into that extensibility.

1. Introduction
1.1. What is Mailman?

Mailman is a Mailing List Management System, like
Majordomo [1] and SmartList [2], used to manage email
redistribution lists. Mailman gives each mailing list a
Web page, and allows users to subscribe, unsubscribe,
etc. over the Web. List managers can administer their
lists entirely from the Web. Mailman also integrates
most things people want to do with mailing lists,
including archiving, mail to news gateways, and so on.

Mailman was originally developed by John Viega. Ken
Manheimer picked up the ball to bring Mailman to 1.0b3.
Currently, Mailman development is a Open Source [3]
group effort, led by John Viega, Ken Manheimer and
Barry Warsaw. Mailman has been designated by the
Free Software Foundation as the GNU Mailing List
Manager [4]. The Mailman home page, with distributions
and background, is at [5].

See [6] for more details on the system, and visit the
Mailman-developers mailing list [7] if you’re interested
in joining the Mailman development community.

1.2. Why Extensibility?

From the early days of the ARPAnet to today, email and
Mailing List Management systems have played a central
role in the formation and conduct of communities on the
Internet. With the profound dynamism of the Internet,
the infrastructures by which it organizes are continually
evolving. Over time, the Internet’s rapidly increasing
scale and the advent of new and improved strategies for
organization of its communities demand continuing
development of the mechanisms that support them. New
and different protocols may take up some types of load,
as Usenet News has done, but email, as a medium, has
proven to be particularly versatile and enduring. A good
MLMS will help foster the evolution of the Internet
communities, by growing with them.

Extensibility also offers an excellent opportunity having
to do with the core constituency of mailing list users - the
mailing list administrators. These administrators
typically are near enough to the end-users to have clear
impressions of their needs. Also, they often are
technically savvy enough to implement improvements to
accommodate those needs - provided the system they’re
changing doesn’t present too high a threshold of
comprehension. Here is a prime opportunity for
exploiting the Bazaar-style of open-software
development [8], enabling the administrators of the
medium, themselves, to guide its development. This
enables development more quickly and closely tailored to
the needs of the user community.

Finally, most aspects of an MLMS do not require the
kind of speed optimizations that force change-impeding
hardening of the system. Performance critical aspects,
like mail delivery to large numbers of users, are generally
the purview of the underlying Mail Transport Agent, not
the MLMS. Large-scale operations can impose some
specialized performance demands on the MLMS, of
course. Their specificity, however, enable isolating the
optimizations to select components, and Python’s
compiled-language extensibility allows hardening of
those specific components as needed This all enables a
strategy of isolating rigidity to the particular subsystems

that need it – an approach for which Python is ideally
suited. As it happens, we don’t currently see need for this
any of this kind of hardening, but we don’t know what
the future (or potential growth of Mailman’s use) will
bring.

1.3. Why Python?

Python is particularly well suited to implementing an
extensive and changing system. Its combination of clean
syntax and cogent semantics aids the programmer, all the
more so in the process of changing existing code – that of
others, as well as that of your own. It is eminently
dynamic, enabling interaction with and programmatic
handling of just about everything in the language. By
satisfying prototyping and rapid development needs, as
well as those of general programming, it can be seen to
foster “continuous development”, where a system
continues to evolve to accommodate a changing world.

2. A Broad Overview of Mailman’s
Structure

Mailman’s core component is the MailList object, a class
instance that represents an individual mailing list.
MailList instances are used in scripts to take input from
an MTA, the Web, Cron, and direct operator articulation.
Taking these inputs they may transmit messages via the
MTA, e.g. list postings or administrative messages,
change various databases, including ones for pending
activity confirmations, Web page templates, and so forth,
or just change mailing list characteristics settings. Figure
1 shows a block diagram of these relationships, with the
MailList instance occupying the Mailman Core Package
block at the center.

Figure 1. Mailman Block Diagram

Mailman Core Package

Logging

CGI
Support

logs templates list db locks Pending
confirms

driver

bin scripts cron scriptsemail cmds

mail wrapper

Sendmail
(or other
MTA)

cron Web

CGI wrapper

See [6] for much more detail about the overarching
organization. We focus on the operation of the
MailList object in this paper.

The MailList class is composed by multiple inheritance
from a number of task-oriented component classes, as
mixins. The task oriented components contain the
methods, variable declarations, and initializations
related to the functionality of a particular subsystem;
for example, that of the delivery mechanism or of the
emailed-commands handler.

The code directly in the MailList class is responsible
for coordination of the mixin classes initialization,
central identification of the specific mailing list,
creation of new mailing lists, and management of
mailing lists’ persistent data and locking. The internal
MailList object code also handles the very top level of
subscriptions and message posting, but the task-
oriented base classes are responsible for the
underpinnings of that and all the other functions of the
mailing list object. The following base classes
currently exist:

MailCommandHandler:
This class implements the parsing and
execution of Majordomo-style commands
embedded in email to -request addresses.
Although users more typically interact with
mailing lists directly through the Web
interface, for compatibility, user commands
can be issued via email. Where appropriate,
the commands have the same syntax and
semantics as the corresponding Majordomo
commands.

HTMLFormatter:
 This class is used to generate list-specific
HTML for presentation via the World Wide
Web interface. Primarily, it uses a widget
library also included in Mailman. Together
this class and library serves a purpose very
similar to that of Robin Friedrich’s HTMLgen
[9] and Digital Creations, L.C. Document
Template [10]. (These alternatives were not
available during the early stages of mailman’s
development.)

Deliverer:
This class conducts delivery of any of the
email associated with a mailing list. This
includes membership delivery of postings,
subscription acknowledgments,
announcements to the list administrator about
list creation, list business pending approval,
subscriber notices regarding their passwords,
and myriad other things. Email is used for a

lot of things by a mailing list system, even
one with a comprehensive Web interface

ListAdmin:
This class manages the queuing and
notification of mailing list submissions -
postings and subscriptions requests - that
require administrator decision (approval or
rejection). For example, a list may be set to
require administrator approval for any
postings, or a posting may be held due to
triggering a filter intended to catch undesired
commercial messages (can you say spam?).

Archiver:
This class handles the archival of posted
messages. Mailman mailing lists can have
public or private archives, and this class
places the posted message in the appropriate
location. It also interfaces with external
Hypertext archivers such as Andrew
Kuchling’s Pipermail [11], which is bundled
with Mailman.

Digester:
Mailing list members can receive posting
immediately, or they can opt to have
cumulative “digests” of the list traffic sent to
them periodically. This class manages
accumulation of the digests, formulation of
the plain and MIME formats (when there are
subscribers to the respective types), and
dispatching of the digests to the respective
subscribers.

SecurityManager:
This class primarily verifies authorization
passwords for the site administrator, list
administrators, and users. It also performs the
task of sanitizing the Majordomo-style
approval passwords from the headers of
administrator approvals submitted via email.

Bouncer:
Mailman catches email delivery bounce
notices, and accumulates tallies of bounce
scores for the mailing list members. For
scores that exceed designated thresholds
within designated timeout conditions, the
bouncer triggers list-prescribed actions,
including disabling of mail delivery or, if set
by the list administrator, unsubscription of the
member from the list.

GatewayManager:
This class handles optional email-to-Usenet
gateways for mailing lists.

3. A Selective Tour of Mailman’s
Facilities, regarding Versatility

3.1. Programming and Interacting With
MailList Objects

Mailman’s central structure is the MailList class
object, whose instances represent individual mailing
lists. These classes are designed to be easily
instantiated by external programs, providing a single,
easy to handle package for access to almost all mailing
list functionality. They constitute a compact, self-
contained API for articulation of mailing lists from
programs, and also for interaction with them using the
interactive Python interpreter shell.

Managing their own locks, MailList instances can be
used simultaneously from many processes without
conflict. Programs manipulating MailList instances
run under CGI for Web interfaces or via command-
pipe email aliases for email interfaces. Cron scripts
instantiate MailList instances to do a job. MailList-
instance based scripts are used to automate any routine
procedures, such as conversion of subscriber lists from
established Majordomo mailing lists.

An interactive session with MailList instances provides
an eminently useful development and debugging tool.
MailList objects are easy to instantiate - all that’s
necessary is inclusion of the Mailman package
directory on the PYTHONPATH, and knowledge of
the right module to import. With interactive
instantiation, we are able to exercise and test isolated
subsystems, as well as the behavior of the MailList as a
whole, and we can employ exploratory tools, like the
Python debugger, along the way.

We can also use interactive sessions to do mailing list
“surgery” - to operate the MailList in ways not
provided for in existing scripts. Using a utility
function, Utils.map_maillists(), we can apply arbitrary
functions to all or to selected Mailman mailing lists at
the site. This enables us to do wholesale conversions
of the MailLists to accommodate, for instance, changes
in the address of the site, or to search for particular
members of any of the mailing lists and then do some
processing on their subscriptions.

In general, in the context of Open Implementation
[12], this versatility fits within the category of the
“Invocation” style of opening.

3.2. MailList Object Inherits from Task-
Oriented Components

The MailList object is composed from task-oriented
component classes using inheritance, as “mixins”. This
approach enables easy sharing of component classes
methods and data throughout the composite MailList

object. In contrast to using explicit delegates for the
components, it avoids the need to explicitly identify
and pass around delegate instances in order to use the
data and methods of those components.

Having all the methods and data inhabit the namespace
of the primary MailList instance can lead to
inadvertent name collisions. However, we feel that the
system would have to get much bigger before that
would become a practical concern - and at that point
we could use naming conventions to prevent the
collisions, while still enjoying the easy sharing. Use of
multiple inheritance provides this direct sharing, along
with organization of the system into distinct,
conceptually motivated modules, easing debugging
and development.

New major modules are still being added as task-
specific mixin classes, and the process is exceptionally
uncomplicated. For instance, as of this writing one of
the primary authors added bi-directional mail/news
gatewaying capability to Mailman. This module
required knowledge of some boilerplate structure, and
only minor changes to existing modules, providing a
major functionality with almost plugin-style ease.

3.3. MailList Instance State Persistence

This direct sharing afforded by inheritance-based
composition of the MailList’s components also
simplifies the MailList object’s persistence
mechanism. By identifying its own data members via
self.__dict__, the MailList object’s persistence
mechanism saves and restores MailList state using a
marshal. (Members that should not be saved are
distinguished with a leading “_” underscore.) This
exploits Python’s introspection capabilities, as well as
a standard, simple persistent storage facility. (The
higher level, standard persistent storage mechanism,
pickle, would do more work than we want or need, so
we were able to avoid its overhead.) As with the
sharing mechanism itself, the persistence arrangement
is uncomplicated, easing approach and acquaintance by
newcomers.

3.4. Logging Mechanism

Interaction with MailList instances commonly are
triggered remotely - via the Web or email - or from
periodically firing cron jobs. The lack of an operator
or a console can make system failures in these contexts
hard to trace. Of course, every program ought to
behave perfectly, or at least fail gracefully. However,
when programming in an environment where change is
frequent, we need to provide some defensive
mechanisms that aid the capture of the errors that
inevitably slip by. Mailman’s logging mechanism
provides that coverage.

Reliable logging is also essential for tracking the
occurrence of common events that otherwise take place
“behind the scenes”. This can include mailing list
subscription activity, automated change of
subscriptions due to delivery failures, and so forth. It
also is useful to be able to use “flag-printing”
debugging, even when stdout does not go anywhere
useful - e.g., when running under CGI, or in
disconnected forked processes, or via email.

The crux of the Mailman logging scheme is a Logger
class with the job of directing messages to log files
with minimal chance of disrupting operation when the
logging process, itself, fails – for instance, when the
log files are inaccessible. Logger objects are
implemented to be defensive about what might go
wrong in the logging process, and to attempt suitable
alternative actions short of raising exceptions. For
instance, logger objects open their log files “lazily”,
and avoid interrupting operations if they are unable to
access them, trying alternative reporting avenues,
instead

Logger instances obey the conventional Python file-
like object interface protocol. Thus, they can be used
to write messages like standard file objects would be.
Logger objects can also be substituted for standard
output streams like sys.stderr and sys.stdout, enabling,
for instance, blanket capture of error tracebacks from
within the modules where they occur. Time-stamped
logger objects and multi-stream output variants are
commonly used within Mailman scripts that run
disconnected from a terminal, to capture errors.

Loggers are applied in Mailman Web-associated
components with another dandy refinement. All Web
CGI scripts are launched via a driver script. The driver
script launches the intended, job-specific scripts within
the context of an unqualified try-except statement. If

any exception escapes the job-specific script -
including ones that simply cannot be caught within a
script, for instance syntax errors - then the driver
catches the exception and handles them in a useful
way. The driver produces the traceback and a listing
of all the HTTP environment variable settings both to
stdout (HTML formatted, for rendition on the Web),
and to the error log file. This way, the Web visitor is
provided with informative feedback, including e.g.
instructions about contacting the site administrator, if
they are inclined, and also the site has a detailed record
of the error. (See Figure 2. Code Excerpt from CGI
Driver Script, showing the use of error loggers and the
comprehensive exception guard.)

The CGI driver script, itself, is small and carefully
hardened, in order to minimize the chance that it will
introduce errors where they won’t be caught. The
same driver is used for all underlying CGI scripts,
increasing the complexity of the driver a bit, but
ultimately reducing the overall complexity, and
increasing the exercise, and ultimately the hardening,
of the driver script overall.

Structural integration of error logging within Mailman
eliminates the need for every CGI or mail handling
script to itself code for logging, and it increases the
detection and pinpointing of faults early in the
development cycle. This incorporation depends on
Python’s high-level exception mechanism,
polymorphism, and standard file-object protocols for a
thorough, low-hassle implementation.

3.5. Web Interface

Mailman provides an interface to MailList objects via
CGI, extending programmatic access to the World
Wide Web. The MailList base class, HTMLFormatter,
contains MailList-specific HTML widgets, built upon
an HTML widget library which is also part of

try:
 logger = StampedLogger('error', label='admin', manual_reprime=1,nofail=0)
 multi = MultiLogger(sys.__stdout__, logger)
 scriptname = sys.argv[1]
 pkg = __import__('Mailman.Cgi', globals(), locals(),'scriptname')
 module = getattr(pkg, scriptname)
 main = getattr(module, 'main')
 try:

main()
 except SystemExit:

a valid exit
pass

 except:
 print_traceback(logger, multi)
 print_environment(logger)

Figure 2. Code Excerpt from CGI Driver Script

Mailman. The underlying library provides a modest
range of HTML document presentation and CGI form
widgets, as well as cookie handling for authorization.
Together with complete access to Mailman mailing
lists via the MailList object, this general mechanism
enables publishing to the Web of access to any aspect
of MailList.

On this we build typical Web-related functionality,
such as an overview of the mailing lists on the site, and

review and subscription to particular lists, available via
the Web. (See Figure 3. Mailing List Home Page.) In
addition, we also extend administrative customization
of MailList operation (see the Configuration Options
section, below), administrative action on the
disposition of subscriptions and postings being held for
approval, and subscriber control of their subscription
status, customization options, and password, among
other things.

The elaborateness of programmatically generating
Web documents, and the lack of a local operator and
error console when the generation typically happens,
can complicate development and debugging of the
process. Use of Mailman’s logging utilities, as
described above, provides reporting of unexpected
errors, and also provides convenient means for
debugging flag “printouts” when exercising Mailman’s
Web interfaces via the Web.

3.6. Configuration Options Mechanism
Exploits Namespace Dynamism

One significant subsystem demonstrating the power of
the interface between MailList objects and the Web is
the mailing list customization-options mechanism.
(See Figure 4. General Administrative Options Page.)

MailList configuration options are expressed as simple
data structures (specifically, as tuples) specifying the

Figure 3. Mailing List Home Page

name of the MailList’s data member which contains
the underlying setting, the type and layout of the
HTML user interface element for the option, a brief
description, and an optional elaborate description.
These options are collected into lists according to
rough categories, e.g. list-privacy specific options, or
digest specific settings. (The option lists also include
string entries that are used to annotate their
presentation, typically including at least a header
describing the category of the set.)

These option descriptors dictate the contents of Web
pages by which the mailing list administrators
customize the behaviors of their mailing lists -
coupling the CGI widgets on the pages with the
underlying settings in the MailList objects. Python’s

dynamic namespaces and high-level data structures,
among other things, enables this simple mechanism to
couple user interface with the underlying data
members.

Its elementary nature, in turn, simplifies the process of
adding new configuration variables or changing
existing ones - a common occurrence when new
features are added or existing ones are changed.

The early formal structuring of the options has
provided another benefit - it enables central
enhancement of the options mechanism as a whole.
One recent example is addition of a help mechanism,
which entailed adding the optional slot for elaborate
descriptions and a corresponding addition to the
presentation mechanism to offer help for those

Figure 4. General Administrative Options Page

variables that contain the elaborate description.

These option description tables could and should be
divided into plugin directories, to further isolate the
introduction of new options from the main body of the
program. This would afford two benefits:

• Isolation of the program from disruption due to
faults in the option descriptions (which tend to be
changed more commonly than other parts of the
program).

• Reevaluation of the option descriptions while the
program is running (which will be particularly
useful when the program is able to run as a
persistent daemon)

Languages lacking the ability to directly access and
effect runtime namespaces could not do any of this
without significant and cumbersome indirection.

4. Drawbacks, Lessons and Open
Questions

We discussed a small sample of some key Mailman
features exhibiting the versatility of the design and
implementation. Below we discuss some inherent
drawbacks, and also some lessons learned and open
questions we’re still pondering.

The MailList object use of mixins means that it gathers
all method and data member names in the same
namespace. This requires some consideration of the
code for the other components to avoid collisions.
Considering that our aim is for these components to
use eachother’s facilities, this is not a problem.

The Mailman configuration options compound this
danger by directly populating the list object with
numerous data members representing the options
values. We should reduce this load by encapsulating
the options within a class object tailored to getting and
setting the options as attributes. This would also
afford additional functionality on options, such as
better defaulting relationships. In this approach,
MailLists that do not customize an option would track
changes to the central setting, while currently the
MailList’s lock-in separate copies of the settings when
they are created.

Early versions of Mailman used broad, unqualified
except clauses, masking unintended exceptions and
making it extremely difficult to track down the origin
of faults contained therein. In practice, unqualified
except clauses should never be used unless the
intention is to catch and actually handle any contained
failures. (Code that does general failure handling can

be seen as an executive of the code being handled. For
example, the single CGI driver script, which directs
fault and debugging info to the appropriate
destinations, plays this role with respect to the CGI
scripts.) In general, except clauses should be as
completely qualified as possible, and should be moved
as close to the exception they’re meant to catch as can
be handled.

One fundamental question concerns the pitfalls of
dynamic typing in a large system. In statically typed
systems, the requirement for explicit variable
declaration exposes most typos and many types of
interface misuse at compile time. Python’s handling of
dynamic types exposes such errors only at runtime, and
only when the faulty code is executed. This can mean
that errors in obscure branches can stay hidden for a
long time - and pop up when least expected. As
systems get larger it becomes harder to exercise all the
code paths, increasing the difficulty of exposing such
errors. At what point do the benefits of static typing
outweigh the versatility of dynamic typing? Are the
respective benefits even directly comparable?

5. Conclusion
The continuing dynamic evolution of the communities
served by Mailing List Management systems suggests
that these systems are perpetually unfinished, with at
least some aspects undergoing evolution. Prototyping
and rapid development are among Python’s clear
strengths, and invaluable in this regard. (A uniform,
flexible architecture is pretty essential, too.)

Mailman exploits many of Python’s features, including
native object orientation, multiple inheritance,
polymorphism, high-level control structures like
exceptions, conventional protocols, dynamic access to
namespaces, cogent data structures, and a wealth of
standard libraries. The power of the language,
combined with its tendency to readability, enables
development of sophisticated systems with
approachable, untortured code. Inherent introspection
and organizational features like classes and modules
promote the flexibility of open implementation.

We have discussed a few of the ways all this has paid
off, including experiences with easy integration of
valuable new subsystems, and increasing incidence of
contributions to the development effort from the user
community, even this early in Mailman’s existence.
We consider Python to be instrumental in these
benefits, and a very good choice for this kind of
project.

References
[1] D. Barr. The Majordomo FAQ.

http://www.greatcircle.com/majordomo/majordom
o-faq.html

[2] The SmartList FAQ.
http://www.mindwell.com/smartlist/

[3] OpenSource.Org. http://www.opensource.org

[4] Free Software Foundation. GNU’s Not Unix.
http://www.gnu.org

[5] Mailman Web Site, list.org. http://www.list.org/

[6] John Viega, Barry Warsaw, Ken Manheimer.
Mailman: The GNU Mailing List Manager. In
Proceedings of the 12th Large Installation Systems
Administration Conference (LISA ’98), Dec.
1998.

[7] Mailman-Developers MailList; mailman-
developers@python.org;
subscribe:
http://www.python.org/mailman/listinfo/mailman-
developers

[8] Eric Raymond. The Cathedral and The Bazaar.
http://www.earthspace.net/~esr/writings/cathedral-
bazaar

[9] Robin Friedrich. HTMLgen.
http://starship.skyport.net/crew/friedrich/HTMLge
n/html/main.html

[10] Digital Creations, L.C. Document Template.
http://www.digicool.com/releases/bobo/Document
Template-rn.html

[11] Andrew M. Kuchling. Pipermail.
http://starship.skyport.net/crew/amk/maintained/pi
permail.html

[12] Gregor Kiczales, Andreas Paepke. Open
Implementations and Metaobject Protocols. (Work
in progress.)
http://www.parc.xerox.com/spl/groups/eca/pubs/p
apers/Kiczales-TUT95

